
CPS122 Lecture: Identifying Responsibilities; CRC Cards

last revised February 16, 2022
Objectives:

1. To show how to use CRC cards to identify objects and find responsibilities

 Materials:

1. ATM System example on the web.
2. Session Use Case flow of events handout
3. Supply of 4x6 cards for CRC cards
4. Chapter 6 quick check answers a-b
5. Exercise 6-1 from book as an activity
6. CRC Cards comments handout

I. Introduction

A. The approach that we are taking to design is called a use-case driven
approach , because we use the use cases identified during analysis to
drive the design process. Our approach is as follows

1. Identify the use cases.

2. Develop the class structure for the system

a) Identify the classes that need to be part of the system - a topic
we dealt with some time ago. We saw then that there are two
things we can consider when seeking to identify classes

(1)The problem domain

(2)Key nouns that occur in the use cases

b) Identify the relationships between various classes - a topic we
have been dealing with.

1

c) Assign responsibilities to each class. Each responsibility that
must be fulfilled to accomplish the use cases must be assigned
to some class. This will be the focus of this set of lectures.

3. In a subsequent set of lectures, we will deal with the process of
detailed design of the various classes

4. Since large systems may include hundreds or thousands of classes,
some partitioning of classes into subsystems (packages) is often
necessary. This is a portion of the design process we will not
discuss until later, though.

B. As we do the design, we will often discover the need for additional
objects and classes, to facilitate the implementation of the objects we
discovered during analysis. (Booch et. al. observe that there may be a
5:1 ratio between classes discovered at analysis time and classes
ultimately needed to implement a system.)

II. Assigning Responsibilities to Classes: CRC Cards

A. Once we have some notion of the key classes that the objects
comprising the system will belong to, we can begin determining what
responsibilities each class will fulfill.

B. One tool that we can use to help us do this is called CRC Cards
(CLASS, RESPONSIBILITY, COLLABORATOR). CRC cards are
not a formal part of UML, but are commonly used as a helpful tool for
doing design that can be used with a variety of methodologies and can
be documented using UML diagrams.

1. A CRC card is a card (generally about 4 x 6) containing at the top
the name of a class, followed by two parallel lists.

a) The list on the left hand side lists the responsibilities of the class.

2

b) The list on the right hand side lists the other classes (if any) with
which this class must collaborate to carry out each task.

c) Relatively small cards are used to ensure that we limit the number of
responsibilities assigned to each class. (A good rule of thumb is that
each class should have on the order of about 3-4 responsibilities).

2. We work through the use cases one by one, allocating
responsibilities to each class that collaborates to carry out that use
case. (This implies that we work through the use case and identify
the classes that will need to collaborate to carry it out.)

3. To get started, we can create a CRC card for each of the classes we
discover from initial analysis of the use case. As we discover the
need for additional classes, we can create additional CRC cards.

4. A typical way to use CRC cards is to "walk through" the each use
use case, identifying tasks that need to be performed and assigning
the responsibility for each to an appropriate class, by recording it in
the “responsibility” column of the appropriate card.

a) The use case itself is made a responsibility of some class.

b) The classes that are called upon to perform specific
responsibilities as part of the use case become collaborators,
noted in the “Collaborators” column of the card for the class
that is responsible for the use case.

c) In addition, each collaborator class gets one or more responsibilities
listed in the “Responsibilities” column of its card - which may in turn,
lead to identifying further collaborators it needs, etc.

5. The key question to ask for each operation we find in the use cases
is "what class should be responsible for this?" Often there will be
more than one possible answer, so the different alternatives need to
be examined carefully before a choice is made.

3

6. This process lends itself particularly well to a group of people
working together, with individual members of the group role-
playing various classes. (Remember, in an OO system the basic
computational model is one of different objects sending messages
to each other. We represent this by having the person who is role
playing a class that needs some task perform asking the
representative of an appropriate collaborating class to perform it.)

C. EXAMPLE: Session use case.

1. For this use case, we will need cards for the following classes:

a) ATM
b) Session
c) Transaction
d) CardReader
e) CustomerConsole
f) Card

DRAW CARDS ON BOARD

2. Ask several students to role play the various classes. Fill in CRC cards
on board as classes get responsibilities or collaborators.

NOTE AT OUTSET: There is no one best way to make the responsibility
assignments. I made certain choices in developing the example, and we
will work with those so that everything hangs together.

3. The use case flow of events for this case begins “A session is
started when a customer inserts an ATM card into the card reader
slot of the machine ..."

a) An obvious assignment of responsibilities is to have a Session
object that is responsible for performing the Session use case.

(Note on card)

4

b) However, the Session object cannot be responsible for starting
the session use case. WHY?

ASK

A session object is not even created until the use case is begun.
Thus, at the very beginning of the use case, there is no session
object in existence as yet!

c) So what class should be responsible for starting a session when
the card is inserted?

ASK - be sure to get both ATM and CardReader

For our purposes, we will make the CardReader responsible to
tell the ATM that a card has been inserted. Then, the ATM will
be responsible for actually creating the session.

Put responsibility to inform ATM on CardReader card, with
ATM as collaborator; and give ATM responsibility to start a
session when card is inserted on ATM card.

d) What class(es) does ATM need as collaborators for this task?

ASK - be sure to get:

(1)Session (The Session constructor is used to actually create
the Session object.)

(2)CustomerConsole (for message telling user to insert card)
Enter the above on card for ATM

(3)Note that CardReader is not made a collaborator of ATM, but
rather the other way around - CardReader makes use of a
service to ATM (responding to insertion of the card.)

e) What other classes get responsibilities as a result of this?

ASK - NOTE ON CARDS

5

(1)Session has already been given the responsibility of
performing the Session use case - otherwise, we would have
to add that to its card now.

(2)CustomerConsole is made responsible for displaying a
message to the customer.

4. At this point, we continue the flow of events in the use case,
understanding that the newly-created Session object is now responsible
for carrying the use case out, making use of other classes as needed.

5. The first thing that must happen is that the card must actually be
read. Continuing with the use case flow of events: “The ATM pulls
the card into the machine and reads it.”

What collaborators does Session use to get this job done?

a) (class) Card - when we read the card, we create a Card object
that contains information about it.

Card is added as a collaborator of Session, and gets a
responsibility on its own CRC card - to represent information
about a customer’s ATM card.

b) CardReader (to read actual information from the card).

Note: The flow of events says “the ATM pulls the card ...”; but in the
design, we make this a responsibility of a component part of the ATM
- the card reader - not of the ATM itself. From the perspective of one
using the system, it looks like the ATM is reading the card - but from
the vantage point of design, the actual task is given to the card reader.

(1)This gives rise to CardReader being a collaborator of Session
(add to card).

(2)This gives rise to a responsibility of CardReader (to actually
read the card.). For this responsibility, CardReader also

6

makes use of Card as a collaborator. (In fact, it creates the
Card object which it then gives to the session.)

c) A design decision that I made in this system is to give the ATM object
responsibility for providing access to its component parts when
Sessions and Transactions need this access. (e.g. a Session object asks
the ATM object to give it a reference to the CardReader object).

(1)This makes ATM a collaborator of Session. (Add to CRC)

(2)This gives ATM a responsibility - to provide access to
component parts. (Add to CRC)

6. What if the card proves to be unreadable? The flow of events says
three things must occur. “(If the reader cannot read the card due to
improper insertion or a damaged stripe, the card is ejected, an error
screen is displayed, and the session is aborted.)”

a) Who should be responsible for ejecting the bad card?

ASK - This one’s pretty clear - the CardReader!

Note this responsibility on its card.

b) Who should be responsible for telling the user the card is bad?

ASK - Again - obvious - the CustomerConsole

Since the customer console has already been given a
responsibility for displaying messages to the customer, no new
responsibility needs to be added here.

c) The aborting of the Session is easy: the relevant method just
terminates.

7. Now the flow of events goes on to say “The customer is asked to
enter his/her PIN”.

7

a) What class(es) does the Session need as collaborator(s)?

ASK

CustomerConsole

b) Add CustomerConsole as a collaborator for Session, and add
responsibility to read a PIN as a responsibility of CustomerConsole.

8. The flow of events continues by saying that the customer “is then
allowed to perform one or more transactions, choosing from a
menu of possible types of transaction in each case.”

a) What class should be responsible for offering the customer the
list of choices?

ASK

(1)Could be the Session.

(2)Could be class Transaction. We will go this route, since this
puts knowledge about the possible types of transactions in
this class (which needs to have it anyway) without burdening
Session with this knowledge.

Add responsibility to Transaction.

b) What collaborators does Transaction need for this task?

(a)CustomerConsole

(b)ATM (to provide access to console)

(c)Constructors of appropriate subclass: Withdrawal,
Deposit, Transfer, Inquiry)

Note on card for Transaction.

Add accept choice from a menu as a responsibility of
CustomerConsole.

8

c) Since performing a transaction use case has a separate flow of
events, we will defer developing details until later, but will note
this as a responsibility of Transaction now.

Add to CRC card

9. The flow of events continues: “After each transaction, the customer
is asked whether he/she would like to perform another.”

We will fold this into the transaction use case responsibility.

10.The flow of events continues: “When the customer is through
performing transactions, the card is ejected from the machine and
the session ends.”

We have already made ejecting a card a responsibility of
CardReader

11.The flow of events ends by saying “If a transaction is aborted due
to too many invalid PIN entries, the session is also aborted, with
the card being retained in the machine.

This adds a “retain card” responsibility to CardReader.

D. SHOW ON THE WEB - my CRC cards for ATM system - GO OVER

E. Class Exercise

Do Exercise 6.1. Note that we are only dealing with the responsibilities of
"Mother" - other classes will be listed as collaborators, but we won't worry
about their responsibilities now.

1. Small groups

2. Discuss as class

3. What additional classes would get responsibilities on their CRC
cards as a result of assigning collaborators on “Mother”?

9

ASK

Develop CRC cards for them in small groups and then discuss as a
class

III.Go over CRC Cards Comments handout

10

